Derive the equation of the straight line in the form of y = mx + c and then sketch the graph. The gradient and the coordinates of a point is given:
| 1) | m = 2 ; (2 , -1) | 2) | m = -3 ; (-1 , -1) |
| 3) | m = 4 ; (3 , 3) | 4) | m = -1 ; (6 , 5) |
| 5) | m = -2 ; (-1 , 2) | 6) | m = -5 ; (-2 , -3) |
| 7) | m = -3 ; (-2 , 6) | 8) | m = 5 ; (0 , 7) |
| 9) | m = 5 ; (-2 , -1) | 10) | m = -1 ; (2 , 4) |
| 11) | m = 5 ; (-1 , -3) | 12) | m = -3 ; (-2 , -6) |
| 13) | m = 2 ; (2 , 6) | 14) | m = 5 ; (-2 , 5) |
| 15) | m = 5 ; (-2 , 1) | 16) | m = 1 ; (-1 , 7) |
| 17) | m = 4 ; (0 , -3) | 18) | m = 5 ; (-4 , -5) |
| 19) | m = 2 ; (2 , -3) | 20) | m = 3 ; (-5 , -6) |
Derive the equation of the straight line in the form of y = mx + c, from the coordinates of the two points:
| 1) | (-5 , 5) , (-7 , -2) | 2) | (4 , 6) , (-7 , 3) |
| 3) | (6 , 6) , (-6 , 9) | 4) | (1 , 5) , (-7 , 3) |
| 5) | (-2 , 7) , (-6 , 9) | 6) | (-5 , 5) , (-6 , 1) |
| 7) | (-5 , 6) , (-5 , 7) | 8) | (6 , 6) , (-5 , 2) |
| 9) | (-1 , 8) , (-5 , -1) | 10) | (-5 , 4) , (-5 , 8) |
| 11) | (0 , 5) , (-7 , 7) | 12) | (5 , 8) , (-6 , 3) |
| 13) | (-5 , 6) , (-7 , 9) | 14) | (6 , 7) , (-7 , 0) |
| 15) | (-4 , 4) , (-7 , 3) | 16) | (-5 , 4) , (-7 , 1) |
| 17) | (-5 , 4) , (-7 , 8) | 18) | (2 , 5) , (-5 , 6) |
| 19) | (-5 , 8) , (-7 , 2) | 20) | (2 , 5) , (-6 , 3) |
The equation of a straight line is y = 5x -6. Find the equations of both a parallel line and a perpendicular line that go through the following points:
| 1) | (1 , 4) | 2) | (3 , -2) |
| 3) | (3 , 9) | 4) | (6 , 8) |
Joke:
How do Microsoft employees get air into their offices? - clicking on an icon that opens a window!