Derive the equation of the straight line in the form of y = mx + c and then sketch the graph. The gradient and the coordinates of a point is given:
| 1) | m = 5 ; (2 , 0) | 2) | m = -3 ; (3 , -5) |
| 3) | m = 4 ; (-3 , 4) | 4) | m = -3 ; (-5 , 0) |
| 5) | m = 2 ; (3 , 4) | 6) | m = -3 ; (-2 , 1) |
| 7) | m = 3 ; (6 , 7) | 8) | m = -5 ; (-3 , -1) |
| 9) | m = -3 ; (-3 , -6) | 10) | m = -3 ; (5 , 4) |
| 11) | m = 2 ; (0 , 3) | 12) | m = 4 ; (-4 , 2) |
| 13) | m = -5 ; (6 , -1) | 14) | m = -2 ; (4 , 3) |
| 15) | m = -5 ; (4 , -5) | 16) | m = -3 ; (-3 , -1) |
| 17) | m = 1 ; (0 , 1) | 18) | m = -3 ; (2 , 0) |
| 19) | m = 2 ; (-3 , 5) | 20) | m = -3 ; (6 , -5) |
Derive the equation of the straight line in the form of y = mx + c, from the coordinates of the two points:
| 1) | (-1 , 5) , (-7 , 2) | 2) | (6 , 6) , (-7 , -3) |
| 3) | (3 , 7) , (-7 , 9) | 4) | (3 , 7) , (-6 , 10) |
| 5) | (3 , 6) , (-7 , 10) | 6) | (-4 , 8) , (-7 , 9) |
| 7) | (6 , 7) , (-7 , 10) | 8) | (-6 , 8) , (-6 , 5) |
| 9) | (0 , 8) , (-6 , 0) | 10) | (-1 , 5) , (-6 , 3) |
| 11) | (5 , 7) , (-5 , -1) | 12) | (4 , 4) , (-6 , -1) |
| 13) | (-4 , 7) , (-5 , -3) | 14) | (-5 , 8) , (-6 , -3) |
| 15) | (-2 , 7) , (-5 , 8) | 16) | (-4 , 5) , (-7 , 9) |
| 17) | (-1 , 8) , (-6 , 1) | 18) | (-4 , 8) , (-6 , 5) |
| 19) | (-4 , 5) , (-7 , 7) | 20) | (6 , 8) , (-5 , -3) |
The equation of a straight line is y = 4x -2. Find the equations of both a parallel line and a perpendicular line that go through the following points:
| 1) | (3 , 3) | 2) | (3 , 7) |
| 3) | (7 , 7) | 4) | (4 , 6) |
Joke:
What would happen if a pair of axes crossed at an acute angle? - spark a killing spree