Derive the equation of the straight line in the form of y = mx + c and then sketch the graph. The gradient and the coordinates of a point is given:
1) | m = 2 ; (3 , 0) | 2) | m = 2 ; (0 , 7) |
3) | m = -3 ; (6 , 8) | 4) | m = 5 ; (3 , 6) |
5) | m = -4 ; (1 , 7) | 6) | m = 3 ; (-1 , 3) |
7) | m = 5 ; (-4 , 2) | 8) | m = -3 ; (-5 , 2) |
9) | m = -5 ; (6 , 6) | 10) | m = 5 ; (0 , -2) |
11) | m = 2 ; (-4 , -1) | 12) | m = 5 ; (4 , 7) |
13) | m = -3 ; (1 , 1) | 14) | m = 3 ; (-3 , -3) |
15) | m = -5 ; (-5 , 0) | 16) | m = -4 ; (1 , 0) |
17) | m = 1 ; (1 , 8) | 18) | m = 4 ; (-5 , -1) |
19) | m = -2 ; (-4 , 6) | 20) | m = -4 ; (6 , 6) |
Derive the equation of the straight line in the form of y = mx + c, from the coordinates of the two points:
1) | (5 , 5) , (-6 , 2) | 2) | (-5 , 5) , (-5 , 1) |
3) | (0 , 7) , (-7 , 8) | 4) | (3 , 7) , (-5 , 10) |
5) | (6 , 7) , (-6 , 0) | 6) | (2 , 6) , (-6 , 8) |
7) | (-4 , 4) , (-6 , -1) | 8) | (0 , 8) , (-6 , 2) |
9) | (-3 , 6) , (-7 , 5) | 10) | (-5 , 7) , (-6 , 3) |
11) | (-6 , 4) , (-7 , 1) | 12) | (5 , 7) , (-7 , 6) |
13) | (-3 , 4) , (-6 , 1) | 14) | (6 , 5) , (-7 , 6) |
15) | (-2 , 4) , (-5 , 1) | 16) | (1 , 6) , (-5 , -3) |
17) | (-4 , 6) , (-6 , -1) | 18) | (2 , 4) , (-5 , -2) |
19) | (0 , 6) , (-6 , 4) | 20) | (0 , 6) , (-5 , 9) |
The equation of a straight line is y = 3x -3. Find the equations of both a parallel line and a perpendicular line that go through the following points:
1) | (6 , 4) | 2) | (6 , 0) |
3) | (7 , 6) | 4) | (7 , 8) |
Joke:
What would happen if a pair of axes crossed at an acute angle? - spark a killing spree